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The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapo-
lation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves
cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be acceler-
ated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and
coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's
equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the
far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-
Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain
with wave-front curvature and wave amplitude is studied systemati¢&063-651X%99)00507-3

PACS numbg(s): 41.75.Ht, 41.20-q, 42.25.Bs, 52.40.Nk

I. INTRODUCTION Maxwell’'s equations and the gauge condition. By contrast, in

L .. the present work, we are using coherent dipole radiation to
In recent years, there has been a growing interest in the

o . Study the effects of wave-front curvature on the electron dy-
possibility of using ultrashort-pulse, table-top teraw@tt)

o . namics in a completely rigorous manner. Here, it is crucial to
lasers[1-3] to accelerate electrons to relativistic energies in P yng

. . ; fnote that the dipole four-vector potential exactly satisfies
vacuum, with extremely high gradients. The concept o , . "
: L2 . poth Maxwell's equations and the Lorentz gauge condition
laser-driven vacuum acceleration is based on the very hlgEver here, and is analytically tractable; thus, this theoreti-
electric fields present at the focus of Tsers, which can yw ' Y y ’ '

reach a few TV/m for intensities exceeding i&v/cn? at cal moqlel is en_t|rely ;elf-contalned, and sufficient to answer
s L . the main question raised here.
visible wavelengths. Preliminary experimefds5], based on

. . In this paper, we present detailed results of numerical
ponderomotive scatterin,7], have demonstrated the pro- _. . . ;
. o . . simulations which demonstrate that electrons are indeed ac-
duction of relativistic electrons over small interaction

celerated in vacuum by the coherent radiation from an oscil-
lengths. . L . )
. . . lating electric dipole. As mentioned above, both Maxwell’'s
There remains, however, an open question regarding the . o -
equations and the Lorentz gauge condition are satisfied, and

exact origin and sgalmg O.f this accele_ratlon mechanlsn}here are no Coulomb-like electrostatic field components as-
[8-10. _The foundation of this argument is based on an ®XSociated with this model, as the dipole has zero net charge;
trapolation of the well-known Lawson-Woodward W) ' '

. hence, any resultant acceleration must be due to ponderomo-

theorem, which is presented in a very clear manner in th ' : . S
. . ive forces. The fields also satisfy two important limits: in the

Introduction of Ref[11]. Referencd11] also contains a de- . . . ) . e
vicinity of the dipole, the fields are similar to those of a

tailed discussion of the dynamics of ultrarelativistic electronsd_ﬁc ina | | ¢ “in the far-field reai h
with a laser field in vacuum. The LW theorem essentially Ifiracting laser pulse near focus; in the far-field region, the

stipulates that plane electromagnetic waves cannot accelere{{slds_ Fend to the plang—wave limit. Thus, one can study the
charged particles in vacuum. Within this context, a detailedransition from the regime where the LW theorem applies, to

understanding of the transition from the plane wave to thdhe more realistic situation of diffracting dipole radiation and
focusing or diffracting wave geometrigsvith wave-front ~ Ponderomotive scattering.

curvature and axial electromagnetic field componeiigs This paper is organized as follows: in Sec. Il, we briefly
critical in elucidating this question. In particular, because theg€view the covariant dynamics of an electron interacting with
acceleration mechanism is not a zeroth-order process, batplane wave, including the LW theorem and radiative cor-
rather relies on the somewhat subtle effects mentionetections; in Sec. Ill, we introduce the four-potential of our
above, it is extremely important to carefully model the elec-dipole model, and consider the relativistic equations of mo-
tromagnetic field distribution with which the charged particletion for an electron subjected to the corresponding electro-
is interacting. This was a strong motivation in our previousmagnetic field distribution; in Sec. IV, the simulation code is
work [7], where the paraxial propagator formalism was usedirst described and benchmarked against plane wave theory;
to model the electromagnetic field of a focused laser pulsenumerical results from several runs are then analyzed, in-
However, such Gaussian models using the paraxial ray agluding the scaling of the energy gain with wave-front cur-
proximation have been criticized because the predicted elesature and wave amplitude; finally, conclusions are drawn in
tron acceleration might be attributed to their deviation fromSec. V.
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1. PLANE WAVE DYNAMICS Incident Plane Wave Packet
This section is intended as a brief review of the interac- )
tion of a relativistic electron with a plane wave of arbitrary e
intensity. For conciseness, we use electron units, where — °

length, time, mass, and charge are measured in unitg,of
ro/c, my, ande, respectively. Here,,=2.8178< 10 m is
the classical electron radius; in these unitg=1/47r and
mo=4m. The equation of motion governing the electron dy-

namics, including radiative recoil is given by the Dirac- i
Lorentz equatiorj12—-14 e
o—> —
du, , da, ,
aﬂzwz—FWu + 7 F—uﬂ(a,,a ), (1)
where 7 is the proper time along the dimensionless electron Plane Wave Packet and Scattered Radiation

world line x,(7); u,(7)=dx,/dr is the four-velocity,
which corresponds to the four-momentum in our units
a,(7)=du,/dr is the four-accelerations, is the Compton

time scale, which is equal t§ in electron units, or 0.626 that u,u”=—1, or, equivalently,72=l+uf+uz, the en-

X10*s in MKSA units; andF ., =9,A,~ 0,4, IS the ergy and axial momentum are easily derived after some
electromagnetic field tensor, as defined in terms of the four- gy ) y

. straightforward algebra:
potentialA,, .

For plane waves, the four-potential is given by

. FIG. 1. Initial and final states for the interaction of a plane wave
'with an electron initially at rest.

2

Al (¢)
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wheredg is the relativistically invariant phase of the traveling and
wave along the electron trajectory. Note that the temporal 5
dependence of the wave is arbitrary, and that the four- B 1+AJ_(¢) 14 @)
potential satisfies the Lorentz gauge conditianA*=0. Y(7)= 70 > (1+5B0)|.

Choosing the four-wave numbéy, = (1,0,0,1), with the

wave propagating in the direction, we have Alternatively, using the relationu, (7)=A, (¢), and em-

ploying the chain rule in conjunction with E¢3), one can
rewrite Eq.(5) asdu,/dr=dy/dr=(1/2«)d,(A?). This is
easily integrated, yieldingu,—u,=y— y,=(1/2«)A?,

] ) ] ] ] whereu,, is the axial component of the initial normalized
which defines the light-cone variable=y—u,. Here,yis  four-velocity. Using the invariant value of the light-cone
the n_orr_nallzed electron energy, atg= worolc_ is the char- _variable, and the relations,o= yo8, and y2=(1—g2)" %,
acteristic pulse frequency, again expressed in electron unitg, o energy and axial momentum are obtained from this result

We first consider the electron dynamics in the absence Ofor 4 few algebraic manipulations, yielding E8) and
radiative corrections; in this case, the Lorentz force equatiorh)_ '

reads

d
d_(f:mo(’)’_uz):ﬁfofﬂ 3

These results are quite general and hold as long as plane
q d waves are considered, and radiation reaction effects are ne-
i:moKﬂ (4)  9lected. In the relativistic intensity regime, whexé> 1, the
dr d¢é axial electron dynamics, which is driven by the ponderomo-
tive force, dominates over the transverse dynamics, which
and scales linearly with the four-potential. Equatién) shows
that there is no net energy gained by the electron after inter-
%:ﬂ: u di () acting with a plane wave: we have ljm..|A"(¢)|=0,
dr _dr 0% do * and therefore ling_ ... y(¢)=17,. This is essentially the
generalized version of the LW theorem. The fact that a
Equation (5) shows that the light-cone variable is invari- charged particle cannot exchange energy and momentum
ant: «=ko=vyo(1—By), Where vy, and B, are the initial  with an incident plane wave in vacuum can easily be seen by
values of the energy and the axial component of the threeexamining the problem in a frame where the electron is ini-
velocity, respectively. Using Ed3), and applying the chain tially at rest, as illustrated in Fig. 1. If the electron gains
rule to the phase derivative in E@), one readily obtains the energy and momentum during the interaction, it is acceler-
transverse momentum invariant, (7)=A, (¢), where we ated and therefore radiates. In the final state, the plane wave
assume that the perpendicular component of the initial fourhas been attenuated, which implies that there is a permanent
velocity is zero. With these two results, and using the factdestructive interference between the plane wave and the
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wave radiated by the electron. This is the classical equivalerdescribed by, (¢) = Ayg($)[X sin$+§cose], and use the
of photon annihilation in QED. However, the electron radi-sjowly varying envelope approximation[i.e., g(¢)

ates waves which decay like™! and therefore, no stable >dg(¢)/de], we obtain a simple differential equation for
interference pattern can be obtained with a plane wave; ifhe light-cone variable perturbation:
fact, in this case, any interference also decaystikk This

shows that, in the absence of radiative correcti@isctron d 1 2 o
recoil), no net energy momentum can be transferred from a AT =eA50° (). (12
plane wave to an electron in vacuum, in agreement with the
generalized LW theorem. Integrating Eq.(12), one obtains
If radiation reaction effects are included, the situation is
considerably different; in this case, the Dirac-Lorentz equa- 1 _ 1 2 [?
tion now readg§13,14 W(h) g TeMo) 0 ()di. (13
a _du, Lo+ 2 d&—u (a,a") ®) This equation describes the recoil of the electron interacting
T dr T 3| dr TP with a circularly polarized plane wave, with a pulse envelope

d(¢). In the case of a hyperbolic secant envelope, where
whereL, =«E, , andL,=Lo=u, -E, corresponds to the g(¢)=cosh (¢/A¢), Eq.(13) takes the analytical form
Lorentz force. Here, we use the fact that the wave electric

field definiton, E=—-Ve—gA, reduces to E, 1 2 ¢
=w,dA, /d¢, for plane waves. Subtracting the axial com- k() _K_0+8A0Ad’ 1“""”*(@ : (14
ponent of Eq(8) from the temporal component, one obtains
an equation governing the evolution ef and the fractional variation of the light-cone variable over
the entire interaction is
de  2[d’k
dr3|d2 @A)} © Ak 28AfAdko s

Ko 1+28A(2)A¢K0'
Equation(9) is an important result, as it shows that when
radiative recoil is taken into account, the light-cone variablewWe can now derive the energy variation during the interac-
is no longer invariant. This, in turn, results in a net energytion, using the relation between the light-cone variable and
variation during the electron interaction with a plane wave,the electron energy,
as will be shown below; in this case, it is clear that the LW
theorem is no longer applicable. 1+u? — &2
The equation governing the evolution of the transverse YT T o0 (16)
momentum is now given by
Here, we note that Iirpﬁiwuf(¢)=0(sz); this is easily
(10) established by considering E¢L1), which shows that the
radiative corrections to the transverse electron dynamics are
at least of orders, and by remembering that there is no

Introducing the small parameter = §wo=2woro/3C,  electromagnetic wave ap— +. Using Eq.(16), and as-
which essentially measures the pulse wavelength in units afyming thata x/x,<1, we find that

ro, and using the phase as the independent variable(9Eq.
can be expressed as

dx { d? (Kz) 2(duﬂ du“)
- K
In the ultrarelativistic limit, for a head-on collisiorBy—

do “lde?\ 2 d¢ do
) —1; in the case of a hyperbolic secant pulse, B4) takes
To solve Eq.(11), we use perturbation theory, wheke the simple formAy/yo:4yosA¢AS.

=kO+ex@M+---+&"k(M+-.. and where all other dy-
namical variables are expressed likewise. Since the righ

d d?u,
E(UL_AL): 3l a2~ u,(a,a”)

Av=yoBo(1-Boerd | gF(o)dg. a7
. (11

In summary, it is clear that radiative corrections are be-

hand side of . | ford | h T3'/ond the scope of the LW theorem. Radiative energy recoil
and side of Eq(11) is at least of ordeg, we can replace the s seen to scale linearly with the electromagnetic pulse inten-

terms in the brackets by their I(_é))rentz dyrzgm(aserc()g)h— sity and duration(thus scaling linearly with the pulse en-
ordey approximation, whered,«™'=0, dyuz;"=ds¥"™,  ergy); also, note that recoil is significant for high-energy

andu®(¢)=A, (¢). Thus, Compton backscattering, where the electron loses energy, or
0 )12 012 o2 ) when a mildly relativistic electron interacts with high-energy
du, du]© [duj du, dy' 1% (dA, photons f<Xc=7%/myc=3.861x 10 **m), in which case
H H | do * do B do | \d¢ |’ the electron can gain energy at the expense of the incident

radiation field. Radiative corrections are important in some
which shows that the radiation depends only on the transsituations, including the recent SLAC nonlinear Compton
verse motion, to lowest order. With this, Ed.1) reduces to  scattering experimenfd 3,15, the proposed Linac Coherent
dx/dp=—exk?(dA, /d¢)2. If we consider a circularly po- Light Source(LCLS) [16], and they-vy collider [17]. How-
larized plane wave, where the transverse vector potential isver, we are interested here in vacuum laser acceleration
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using high-intensity, low-frequencyvisible) photon fields, ceed with care: there are two extra terms in the Minkowski
where the acceleration process does not rely on radiativiorce component along the polarization axis, the first is due
corrections, but rather on wave-front curvature and axiato the multiplicative factor of the variablg in the scalar
electromagnetic field components. This is studied in the nexpotential, while the second comes from the fact that the vec-
section. tor potential has a component in that direction. Hencexthe
component of the Minkowski four-force can be expressed as
lll. ELECTRON DYNAMICS IN A COHERENT DIPOLE
FIELD duy

_ _ o _ _ =—(U*9,A,—Uu"d, A= yf— 5u“arAMwL utd Ay

In this section, radiation reaction effects are not taken into dr . r

account; therefore, the natural units of length and time are (22)
given by the radiation wave packet characteristic wave hum- o

berkal, and frequencygugl, respectively. In the case of an Emally, the timelike component of the Lorentz force equa-
idealized oscillating electric dipole, the vector potential takedion governs the evolution of the electron energy, and reads
the form[18]

+(u-f)d, e.
(23

dy (U#9A,—U*d,p)=U (dAXJr ¢
(). = (WA e U gt
A(X,)=Ag——%, (18) dr d¢ X

wherer = x“+y“+z° is the distance from the dipol& is  |f one examines Eqs(20—(22), an interesting symmetry
the direction of polarization of the dipol@irection of the  emerges: all of the spatial components of the Minkowski
oscillating current ¢=t—r is the radial phase, expressed in four-force depend upon a common term, namely
normalized units, and(¢) is an arbitrary function of the (Lr)u#g,A,. Thus, one can rearrange the terms in Egs.
phase which corresponds to the temporal behavior of thex0)—(22) to obtain the following identities:

dipole current. Without loss of generality, we defifgp)

=g(¢p)cose, whereg(¢) is the temporal envelope of the 1 4, 1du. 1/du ® 1
dipole oscillatory motion. The scalar potential is obtaine e X—u“&MAX—y— =——U"9,A,.
from the Lorentz gauge conditior, A*=0, with the result Y dr zdr x\ds X r

that (24)
x[h(¢) These identities are useful in checking the accuracy of the
¢(Xu)=Agz| —— +T(#)], (19 numerical code used to simulate the electron dynamics in the

dipole field. The quantity to the right-hand side of Eg4)

where h(¢)=[f($)dt. At this point, it is important to can be expressed explicitly as
verify that Maxwell’'s equations are completely satisfied by
this form of the four-potential and the Lorentz gauge condi- Uk A, =U*9 A= ydr @
tion. The latter is verified by virtue of Eq19); also, since
we are using the four-potential, with= -V ¢—9,A andB _ ﬁ( yf E
=V XA, Maxwell's source-free equation¥,-B=0 andV r r r
X E+d,B=0, are automatically satisfied. Therefore, all we
need to check is tha&¥ - E=0 andVXB—¢,E=0, as we are —u,
considering the propagation of the dipole wave in vacuum.
In terms of the potential, these equations reduce to the wave
equation,0A,=[4,3"]A,=[V?=7]A,=0, which is in-  also, we have
deed verified by the dipole four-potenti#l,,=[ ¢,A,,0,0].

The Lorentz force components can easily be calculated Aq| df
from the four-potential. For thg and z components, this ~ U*d,Ax=[(U-V)+ yd]A= [7@
yields

3

r

N df
de

f df
r T dsg

] ; (25

_ur

f df)
F+ﬁ .

(26)

T

du, y
ar Uka A, =— F(u“arAﬂ) (20
The solution to the relativistic equations of motion is not
and analytically tractable, but in the limiting case where the dis-
tance from the dipole, as measured in unit&gt, is a large
number, we recover the plane wave dynamics discussed in
Sec. II. For shorter distances, where the wave-front curvature
and the axial electromagnetic field components are signifi-
where we recognize the fact that the partial derivatives opeant, a numerical code has been developed, and is presented
erate only on the variable(when it occurs alone as a spatial in Sec. IV. We now derive the electromagnetic field corre-
variable, and as part of the invariant phasthus, we can sponding to the dipole four-potential from the relatiby,
rewrite the derivatives in terms of using the chain rule. For =4,A,—d,A,. The electric field of the ideal oscillating di-
the x component, the situation is similar, but we must pro-pole is given by

du, z
EZ_UMaZAMZ_F(UMarAM)v (21
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E_A0 x\?[3(h . df] [1 h+f +df
) Pl T T ag T de|’
(27)
E,= xy3h+f+df 28
y=Ro| 13|77 ao (28
and
xz\[3/h df FIG. 2. Dipole intensity distribution, and geometry of the inter-
E,= A0< r—3) F (F + @} , (29) action.
while the magnetic induction is given by the relative displacement along thaxis is small compared
to the distance from the dipole, so that diffraction over the
B,=0, (30 interaction length remains negligible.
Finally, we note that for a linearly polarized dipole wave,
Ao(z\|f df as described here, the electron trajectory remains in the plane
By:T r F+ de|’ 3D of polarization; in other words, we can arbitrarily set0

Ao
T

(32

z

because of the azimuthal symmetry of the dipole radiation
and pattern(see Fig. 2, and haveE,=B,=0. Becausd,=0 as
well, it is clear that there is no component of the Lorentz
Y) f df} force in they direction; as a result, the electron trajectory
=+ . . X , : o
r/ir de remains two-dimensional and contained within e (po-
larization plane.
In the limit where the distance from the radiating dipole, as  According to classical electrodynamic theory, any electro-
measured in units of the characteristic oscillation wavelengtimagnetic wave can be described in terms of a multipole ex-
ko 1=\o/27, is large, it is easy to show that the electromag-pansion[18,19. The lowest-order moment is the dipole
netic field distribution reduces to that of a plane wave: weterm, which we have employed in our simulations; contribu-
have tions from quadrupole, octupole, and other higher-order mo-
ments will be added to future versions of these simulations in

E Ao( df [1 (X 2 1 -3 order to provide a full description of a laser focus in vacuum
x=——137/1-|=] [+FO(r ) ;+0O(r ) ; . :
r (de¢ r based on a multipole expansion. Vacuum laser acceleration
) could then be systematically verified for each order of the
o ﬁ ﬂ[l— (f) 33) expansion and studied in detail with an electromagnetic field
r do r) |’ distribution which fully satisfies Maxwell’'s equations and
the gauge condition.
xy| df _
Ey AO(T d—+O(I' 4)20, (34)
r ¢ IV. NUMERICAL SIMULATIONS
and The independent variable is chosen to be the radial phase,
S\ df ¢=t—r; the evolution of the four-velocity is then described
=Ao| 5|5+ =0, 35 DY
o du, du, dr 1
for the electric field, and 46 = dr dé =a,(y—u) (39)
B,=0, (36

A df 1A df where the four-acceleration,,, is described by Eqg20)—
z z : - L
B,~ 0 (_) +o(r 1|~ o( ) 37) (23), and where the radial component of the four-velocity is

rir/|d¢ |” rlr/de’ given by
and
_dr XUtyuytzu, 40
o PoY|[A L o Aefyidf o T P e (
Z 1 \r)|de (r )__ r\r/de’
. . The four-position of the electron is evaluated as
for the magnetic induction. Far=r, we recover the plane
wave relationB,=E,; it is also important to note that in od .
order to compare the dipole field with a plane wave, diffrac- _ _ +J’ X = +f Us q
tion must be taken into account by rescaling the amplitude of(“(d)) Xu($=0) o dy ¥=Xuo olvy—u, ()dy.

the four-potential ag\g— Ay /r. This is consistent as long as 41
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) FIG. 4. Top: electron energy as a function of phase, and com-
FIG. 3. Top: electron energy as a function of phase, and compayison with the plane wave case. Bottom:  transverse momentum
parison with the plane wave case. Bottom:  transverse momentuiflng vector potential, in the ponderomotive scattering regime.
and vector potential, in the Lawson-Woodward limit.

) The convergence of the code is verified by comparing
In order to increase the accuracy of the code, a secondyiernative calculated values of the energy, namely,
order Runge-Kutta algorithm is used, where each dynamical

variable,w(¢), is evaluated according to ¢[ ag
W =rg=0+ [ 2wy e
+6¢)= +6 dw +5;¢52d2_w (42 T
W($+84)=w(p)+ 8¢ G2 (d)+ = Goz(9). o
The light-cone variablex=y—u,, is calculated using the Y(b) =1+ U2( )+ UZ(p)+ uX(b) 47)
X y z .

identity u,u#=—1, with the result thatx=[1+(u

~ 2 . . .
XF))/(y+u,). Also, the evolution equation for the light- The relative numerical error is obtained by dividing the dif-
cone variable ference between Eq$46) and (47) by the average value of
the energy{v).

d_K = i(y_ u,)= 1 u (% + f) The code is first benchmarked against plane wave dynam-
d¢ do oy—u [ Mlde X ics, as summarized in Sec. Il. The initial normalized distance
(9(P U2—Ur2 R du 80 1
+UrW—( p —r- @, (43) s
< @
is used to randomize the numerical noise and minimize the % 195 §
growth of numerical instabilities by introducing the averaged =~ £ 2
quantities 3 1, 2
3 8
2 N =
1 N ¢ dr N 1+ (uxr) 44 :—é §
<K>_2 Ko Odw lﬁ' 7+Ur ( ) g —-O.SE
2
and 0 1 1 1 ) 1
0 20 40 60 80 100
1 J‘qs d v \/_2 Bectron Phase
== + | —dy+J1+u“|. (45)
(y) 2 Yo o dy v FIG. 5. Typical electron trajectory for ponderomotive scattering.
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FIG. 6. Scaling of the relative energy gain with the wave-front .
amplitude.

curvature.

from the radiating dipole is set at a large value,=y, larization is chosen to be zero, since the dipole field ampli-
=0, zo=1CP. The temporal pulse envelope is modeled by thetude is maximized in the-y plane, as shown in Fig. 2.
function g( ¢) = sirf(mr¢lweAt) =sir?(dp/A¢p) in order to in- The electron energytop) and transverse momentum
tegrate the equations of motion over the finite phase intervailong the polarization axi€otton) are shown as functions
¢<[0A¢]; this envelope also closely approximates aof the phase in Fig. 3, and compared to the results obtained
Gaussian near its maximum. The dipole parameters consi$ar plane waves. In this casf,/zy=1, for the dipole field,
tently used throughout our analysis are: an intensity fullandAy=1, for the plane wave. The results fully validate the
width at half maximum(FWHM) of 10 fs, and a wavelength code accuracy for small wave-front curvatures: the maxi-
Ap=0.8um, corresponding to the central wavelength of mum relative difference between the dipole and plane wave
Ti:Al ,O; CPA lasers[1-3]. The initial electron energy is models is<10 '°. Consequently, these results clearly verify
chosen to beyy,=1, with the particle at rest before the inter- the LW theorem.

action; any other case can easily be modeled by boosting the A much smaller value of the initial electron position is
dipole four-potential using the Lorentz transform. Finally, now considered: z,=10. The amplitude of the four-
the initial position of the electron along the direction of po- potential is chosen so thét,/zo=1. In this case, shown in
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Fig. 4, scattering is obtained, and the electron energy is in- V. CONCLUSIONS
creased after the interaction. The corresponding electron tra-

jectory is shown in Fig. 5, where we have plotte@) and There is a lively debate regarding the exact origin of the

2(¢). The numerical error for this run is quite low mecha_mism for vacuum accgleration of reIatiyistic electrons
(<1019, and many orders of magnitude smaller than th by an Intense eIectro_magneUc pu[ﬁel_()]. In this paper, we
energy gz,iin thus clearly indicating that the net acceleratioeha\./e studied theoretlca_llly and numerlc_ally th_e vacuum inter-
results from'the dynamics, and that the LW theorem is no'écnon of an elgctron with a coherent dlpole field distribution
applicable for this level of ,vvave—front curvature xactly sansfymg bot.h I\./Iaxwell’s equations and the Loren_tz
Now, we perform a systematic study of the s'caling of theduge condmon. This is important, because 'the scattering
' results obtained cannot be attributed to approximations in the

; - e .
tehnee:/ggvgi‘lrrgﬁtyc;r)\//gtu?()a a7;10 d d)i/ oleyg\;a\ljgtgrrl]n "tteurgwes I?]f th electromagnetic field distribution. It was found that in the
’ P P : Simit where the wave-front curvature of the dipole field is

first instance, the initial amplitude of the dipole wave is ﬁxedSmall the electron dynamics predicted by the plane wave
(Ao/zo is helq gqnstgr)t and we run th? code for different theor;/ were recovered, in agreement with the LW theo-
values of th.e |n_|t|al distance from the d|pola,.. The results .rem: no net energy gain was observed. In the regime where
age /shown mfFIgt.hG, Wzt?f:ce Wet plof the r(;,-BI\at/Ne energyl 938Nne wave-front curvature is significant, it was found that the
(8 7/ v0)(20) for three different values oRg/zo, namely |y theorem no longer applies; indeed, net electron accelera-

gzt 1.0, ?Rd EV\-/I— he;e calcgltayions fdeﬁ.rlthhOlW the ftrandsitioHon was obtained. We then systematically studied the scaling
etween the regime, oblained for high valuezof an of the energy gain with the wave amplitude, and with the

the ponderomotive scattering regime, which corresponds ;.o tront curvature. It was found that the wave-front cur-
highly curved wave fronts. Furthermore, we have quantifie ature plays a major role in the acceleration mechanism: in
the variation Of. t_he relative energy gain with the V"ave'fromaddition, two distinct scattering regimes can be defined, in
curvature, by fitting the data displayed on a log-log scale g g of the wave intensity:  the nonrelativistic intensity re-
an inverse power law, whereAfy/yo)(2o)<2o " It Was  gime where the effective normalized vector potential is
found that the powen varied between 1.948 and 2.16 for \,.ch smaller than unitj(A,/z5)2<1] and the energy gain
values ofA/z, ranging between 0.1 and 10; therefore, anis gmall, and the relativistic regime, where the axial dynam-
inverse square scaling appropriately describes the transitiqs dominates over the transverse motion, yielding a quasi-
from ponderomotive scattering to the LW plane wave re-jinaar scaling of the energy gain withy/z,. Finally, it was
gime. This result agrees well with physical intuition, and 4156 shown that when radiation reaction is taken into ac-
shows the impor.tant rol_e played by the axial electric.fieldcount, plane waves can exchange energy and momentum
component: by |n§gec_tlng E(BS), we see thaE, approxi-  yjith a charged particle, but the effect is essentially nonlinear
mately scales like "~ sincer=z at large distances, where 4.4 scales as the square of the charge and external field, in a

the transverse displacement satisfies the inequafity< 1. regime where the LW theorem clearly no longer applies.
In the second case, the initial distance from the dipole is
fixed, and we now study the behavior ok ¢/vy)(Aq/2zp), ACKNOWLEDGMENTS
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