
02139

PHYSICAL REVIEW E JULY 1999VOLUME 60, NUMBER 1
Vacuum electron acceleration by coherent dipole radiation
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The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapo-
lation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves
cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be acceler-
ated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and
coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell’s
equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the
far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-
Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain
with wave-front curvature and wave amplitude is studied systematically.@S1063-651X~99!00507-3#

PACS number~s!: 41.75.Ht, 41.20.2q, 42.25.Bs, 52.40.Nk
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I. INTRODUCTION

In recent years, there has been a growing interest in
possibility of using ultrashort-pulse, table-top terawatt~T3!
lasers@1–3# to accelerate electrons to relativistic energies
vacuum, with extremely high gradients. The concept
laser-driven vacuum acceleration is based on the very h
electric fields present at the focus of T3 lasers, which can
reach a few TV/m for intensities exceeding 1017W/cm2 at
visible wavelengths. Preliminary experiments@4,5#, based on
ponderomotive scattering@6,7#, have demonstrated the pro
duction of relativistic electrons over small interactio
lengths.

There remains, however, an open question regarding
exact origin and scaling of this acceleration mechan
@8–10#. The foundation of this argument is based on an
trapolation of the well-known Lawson-Woodward~LW!
theorem, which is presented in a very clear manner in
Introduction of Ref.@11#. Reference@11# also contains a de
tailed discussion of the dynamics of ultrarelativistic electro
with a laser field in vacuum. The LW theorem essentia
stipulates that plane electromagnetic waves cannot accel
charged particles in vacuum. Within this context, a detai
understanding of the transition from the plane wave to
focusing or diffracting wave geometries~with wave-front
curvature and axial electromagnetic field components! is
critical in elucidating this question. In particular, because
acceleration mechanism is not a zeroth-order process,
rather relies on the somewhat subtle effects mentio
above, it is extremely important to carefully model the ele
tromagnetic field distribution with which the charged partic
is interacting. This was a strong motivation in our previo
work @7#, where the paraxial propagator formalism was us
to model the electromagnetic field of a focused laser pu
However, such Gaussian models using the paraxial ray
proximation have been criticized because the predicted e
tron acceleration might be attributed to their deviation fro
PRE 601063-651X/99/60~1!/926~9!/$15.00
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Maxwell’s equations and the gauge condition. By contrast
the present work, we are using coherent dipole radiation
study the effects of wave-front curvature on the electron
namics in a completely rigorous manner. Here, it is crucia
note that the dipole four-vector potential exactly satisfi
both Maxwell’s equations and the Lorentz gauge condit
everywhere, and is analytically tractable; thus, this theor
cal model is entirely self-contained, and sufficient to answ
the main question raised here.

In this paper, we present detailed results of numeri
simulations which demonstrate that electrons are indeed
celerated in vacuum by the coherent radiation from an os
lating electric dipole. As mentioned above, both Maxwel
equations and the Lorentz gauge condition are satisfied,
there are no Coulomb-like electrostatic field components
sociated with this model, as the dipole has zero net cha
hence, any resultant acceleration must be due to pondero
tive forces. The fields also satisfy two important limits: in th
vicinity of the dipole, the fields are similar to those of
diffracting laser pulse near focus; in the far-field region, t
fields tend to the plane-wave limit. Thus, one can study
transition from the regime where the LW theorem applies
the more realistic situation of diffracting dipole radiation a
ponderomotive scattering.

This paper is organized as follows: in Sec. II, we brie
review the covariant dynamics of an electron interacting w
a plane wave, including the LW theorem and radiative c
rections; in Sec. III, we introduce the four-potential of o
dipole model, and consider the relativistic equations of m
tion for an electron subjected to the corresponding elec
magnetic field distribution; in Sec. IV, the simulation code
first described and benchmarked against plane wave the
numerical results from several runs are then analyzed,
cluding the scaling of the energy gain with wave-front cu
vature and wave amplitude; finally, conclusions are drawn
Sec. V.
926 ©1999 The American Physical Society
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II. PLANE WAVE DYNAMICS

This section is intended as a brief review of the inter
tion of a relativistic electron with a plane wave of arbitra
intensity. For conciseness, we use electron units, wh
length, time, mass, and charge are measured in units ofr 0 ,
r 0 /c, m0 , ande, respectively. Here,r 052.8178310215m is
the classical electron radius; in these units,«051/4p and
m054p. The equation of motion governing the electron d
namics, including radiative recoil is given by the Dira
Lorentz equation@12–14#

am5
dum

dt
52Fmnun1t0Fdam

dt
2um~anan!G , ~1!

wheret is the proper time along the dimensionless elect
world line xm(t); um(t)5dxm /dt is the four-velocity,
which corresponds to the four-momentum in our un
am(t)5dum /dt is the four-acceleration;t0 is the Compton
time scale, which is equal to23 in electron units, or 0.626
310223s in MKSA units; andFmn5]mAn2]nAm is the
electromagnetic field tensor, as defined in terms of the fo
potentialAm .

For plane waves, the four-potential is given by

Am~f!5@w,A'~f!,Az#, w5Az50, f5kmxm~t!,
~2!

wheref is the relativistically invariant phase of the travelin
wave along the electron trajectory. Note that the tempo
dependence of the wave is arbitrary, and that the fo
potential satisfies the Lorentz gauge condition,]mAm50.
Choosing the four-wave numberkm5Ã0(1,0,0,1), with the
wave propagating in thez direction, we have

df

dt
5Ã0~g2uz!5Ã0k, ~3!

which defines the light-cone variablek5g2uz . Here,g is
the normalized electron energy, andÃ05v0r 0 /c is the char-
acteristic pulse frequency, again expressed in electron u

We first consider the electron dynamics in the absenc
radiative corrections; in this case, the Lorentz force equa
reads

du'

dt
5Ã0k

dA'

df
~4!

and

duz

dt
5

dg

dt
5Ã0u'•

dA'

df
. ~5!

Equation ~5! shows that the light-cone variable is invar
ant: k5k05g0(12b0), whereg0 and b0 are the initial
values of the energy and the axial component of the th
velocity, respectively. Using Eq.~3!, and applying the chain
rule to the phase derivative in Eq.~4!, one readily obtains the
transverse momentum invariant,u'(t)5A'(f), where we
assume that the perpendicular component of the initial fo
velocity is zero. With these two results, and using the f
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that umum521, or, equivalently,g2511u'
2 1uz

2, the en-
ergy and axial momentum are easily derived after so
straightforward algebra:

uz~t!5g0Fb01
A'

2 ~f!

2
~11b0!G ~6!

and

g~t!5g0F11
A'

2 ~f!

2
~11b0!G . ~7!

Alternatively, using the relationu'(t)5A'(f), and em-
ploying the chain rule in conjunction with Eq.~3!, one can
rewrite Eq.~5! as duz /dt5dg/dt5(1/2k)dt(A'

2 ). This is
easily integrated, yielding uz2uz05g2g05(1/2k)A'

2 ,
whereuz0 is the axial component of the initial normalize
four-velocity. Using the invariant value of the light-con
variable, and the relationsuz05g0b0 and g0

25(12b0
2)21,

the energy and axial momentum are obtained from this re
after a few algebraic manipulations, yielding Eqs.~6! and
~7!.

These results are quite general and hold as long as p
waves are considered, and radiation reaction effects are
glected. In the relativistic intensity regime, whereA'

2 @1, the
axial electron dynamics, which is driven by the ponderom
tive force, dominates over the transverse dynamics, wh
scales linearly with the four-potential. Equation~7! shows
that there is no net energy gained by the electron after in
acting with a plane wave: we have limf→6`uA'(f)u50,
and therefore limf→6` g(f)5g0 . This is essentially the
generalized version of the LW theorem. The fact that
charged particle cannot exchange energy and momen
with an incident plane wave in vacuum can easily be seen
examining the problem in a frame where the electron is
tially at rest, as illustrated in Fig. 1. If the electron gai
energy and momentum during the interaction, it is acce
ated and therefore radiates. In the final state, the plane w
has been attenuated, which implies that there is a perma
destructive interference between the plane wave and

FIG. 1. Initial and final states for the interaction of a plane wa
with an electron initially at rest.
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wave radiated by the electron. This is the classical equiva
of photon annihilation in QED. However, the electron ra
ates waves which decay liker 21 and therefore, no stabl
interference pattern can be obtained with a plane wave
fact, in this case, any interference also decays liker 21. This
shows that, in the absence of radiative corrections~electron
recoil!, no net energy momentum can be transferred from
plane wave to an electron in vacuum, in agreement with
generalized LW theorem.

If radiation reaction effects are included, the situation
considerably different; in this case, the Dirac-Lorentz eq
tion now reads@13,14#

am5
dum

dt
5Lm1

2

3 Fdam

dt
2um~anan!G , ~8!

where L'5kE' , and Lz5L05u'•E' corresponds to the
Lorentz force. Here, we use the fact that the wave elec
field definition, E52“w2] tA, reduces to E'

5Ã0dA' /df, for plane waves. Subtracting the axial com
ponent of Eq.~8! from the temporal component, one obtai
an equation governing the evolution ofk,

dk

dt
5

2

3 Fd2k

dt22k~anan!G . ~9!

Equation~9! is an important result, as it shows that wh
radiative recoil is taken into account, the light-cone varia
is no longer invariant. This, in turn, results in a net ener
variation during the electron interaction with a plane wa
as will be shown below; in this case, it is clear that the L
theorem is no longer applicable.

The equation governing the evolution of the transve
momentum is now given by

d

dt
~u'2A'!5

2

3 Fd2u'

dt2 2u'~anan!G . ~10!

Introducing the small parameter«5 2
3 Ã052v0r 0 /3c,

which essentially measures the pulse wavelength in unit
r 0 , and using the phase as the independent variable, Eq~9!
can be expressed as

dk

df
5«F d2

df2 S k2

2 D2k2S dum

df

dum

df D G . ~11!

To solve Eq. ~11!, we use perturbation theory, wherek
5k (0)1«k (1)1¯1«nk (n)1¯ , and where all other dy-
namical variables are expressed likewise. Since the ri
hand side of Eq.~11! is at least of order«, we can replace the
terms in the brackets by their Lorentz dynamics~zeroth-
order! approximation, wheredfk (0)50, dfuz

(0)5dfg (0),
andu'

(0)(f)5A'(f). Thus,

Fdum

df

dum

df G ~0!

5Fdu'
~0!

df G2

1Fduz
~0!

df G2

2Fdg~0!

df G2

5S dA'

df D 2

,

which shows that the radiation depends only on the tra
verse motion, to lowest order. With this, Eq.~11! reduces to
dk/df.2«k2(dA' /df)2. If we consider a circularly po-
larized plane wave, where the transverse vector potenti
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described byA'(f)5A0g(f)@ x̂ sinf1ŷ cosf#, and use the
slowly varying envelope approximation@i.e., g(f)
@dg(f)/df], we obtain a simple differential equation fo
the light-cone variable perturbation:

d

df F 1

k~f!G.«A0
2g2~f!. ~12!

Integrating Eq.~12!, one obtains

1

k~f!
.

1

k0
1«A0

2E
2`

f

g2~c!dc. ~13!

This equation describes the recoil of the electron interac
with a circularly polarized plane wave, with a pulse envelo
g(f). In the case of a hyperbolic secant envelope, wh
g(f)5cosh21(f/Df), Eq. ~13! takes the analytical form

1

k~f!
.

1

k0
1«A0

2DfF11tanhS f

Df D G , ~14!

and the fractional variation of the light-cone variable ov
the entire interaction is

Dk

k0
.2

2«A0
2Dfk0

112«A0
2Dfk0

. ~15!

We can now derive the energy variation during the inter
tion, using the relation between the light-cone variable a
the electron energy,

g5
11u'

2 2k2

2k
. ~16!

Here, we note that limf→6` u'
2 (f)5O(«2); this is easily

established by considering Eq.~11!, which shows that the
radiative corrections to the transverse electron dynamics
at least of order«, and by remembering that there is n
electromagnetic wave atf→6`. Using Eq.~16!, and as-
suming thatDk/k0!1, we find that

Dg5g0b0~12b0!«A0
2E

2`

1`

g2~f!df. ~17!

In the ultrarelativistic limit, for a head-on collision,b0→
21; in the case of a hyperbolic secant pulse, Eq.~17! takes
the simple formDg/g0.4g0«DfA0

2.
In summary, it is clear that radiative corrections are b

yond the scope of the LW theorem. Radiative energy rec
is seen to scale linearly with the electromagnetic pulse int
sity and duration~thus scaling linearly with the pulse en
ergy!; also, note that recoil is significant for high-energ
Compton backscattering, where the electron loses energ
when a mildly relativistic electron interacts with high-ener
photons (l&|C5\/m0c53.861310213m), in which case
the electron can gain energy at the expense of the incid
radiation field. Radiative corrections are important in so
situations, including the recent SLAC nonlinear Compt
scattering experiments@13,15#, the proposed Linac Coheren
Light Source~LCLS! @16#, and theg-g collider @17#. How-
ever, we are interested here in vacuum laser accelera
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using high-intensity, low-frequency~visible! photon fields,
where the acceleration process does not rely on radia
corrections, but rather on wave-front curvature and ax
electromagnetic field components. This is studied in the n
section.

III. ELECTRON DYNAMICS IN A COHERENT DIPOLE
FIELD

In this section, radiation reaction effects are not taken i
account; therefore, the natural units of length and time
given by the radiation wave packet characteristic wave nu
berk0

21, and frequency,v0
21, respectively. In the case of a

idealized oscillating electric dipole, the vector potential tak
the form @18#

A~xm!5A0

f ~f!

r
x̂, ~18!

wherer 5Ax21y21z2 is the distance from the dipole,x̂ is
the direction of polarization of the dipole~direction of the
oscillating current!, f5t2r is the radial phase, expressed
normalized units, andf (f) is an arbitrary function of the
phase which corresponds to the temporal behavior of
dipole current. Without loss of generality, we definef (f)
5g(f)cosf, whereg(f) is the temporal envelope of th
dipole oscillatory motion. The scalar potential is obtain
from the Lorentz gauge condition,]mAm50, with the result
that

w~xm!5A0

x

r 2 Fh~f!

r
1 f ~f!G , ~19!

where h(f)5* f (f)dt. At this point, it is important to
verify that Maxwell’s equations are completely satisfied
this form of the four-potential and the Lorentz gauge con
tion. The latter is verified by virtue of Eq.~19!; also, since
we are using the four-potential, withE52“w2] tA andB
5“3A, Maxwell’s source-free equations,“•B50 and“
3E1] tB50, are automatically satisfied. Therefore, all w
need to check is that“•E50 and“3B2] tE50, as we are
considering the propagation of the dipole wave in vacuu
In terms of the potential, these equations reduce to the w
equation,hAm5@]n]n#Am5@¹22] t

2#Am50, which is in-
deed verified by the dipole four-potential,Am5@w,Ax,0,0#.

The Lorentz force components can easily be calcula
from the four-potential. For they and z components, this
yields

duy

dt
52um]yAm52

y

r
~um] rAm! ~20!

and

duz

dt
52um]zAm52

z

r
~um] rAm!, ~21!

where we recognize the fact that the partial derivatives
erate only on the variabler ~when it occurs alone as a spati
variable, and as part of the invariant phase!; thus, we can
rewrite the derivatives in terms ofr, using the chain rule. Fo
the x component, the situation is similar, but we must p
ve
l

xt

o
re
-

s

e

-

.
ve

d

-

-

ceed with care: there are two extra terms in the Minkow
force component along the polarization axis, the first is d
to the multiplicative factor of the variablex in the scalar
potential, while the second comes from the fact that the v
tor potential has a component in that direction. Hence, thx
component of the Minkowski four-force can be expressed

dux

dt
52~um]xAm2um]mAx!5g

w

x
2

x

r
um] rAm1um]mAx .

~22!

Finally, the timelike component of the Lorentz force equ
tion governs the evolution of the electron energy, and re

dg

dt
52~um] tAm2um]mw!5uxS dAx

df
1

w

x D1~u• r̂ !] rw.

~23!

If one examines Eqs.~20!–~22!, an interesting symmetry
emerges: all of the spatial components of the Minkow
four-force depend upon a common term, name
(1/r )um] rAm . Thus, one can rearrange the terms in E
~20!–~22! to obtain the following identities:

1

y

duy

dt
5

1

z

duz

dt
5

1

x S dux

dt
2um]mAx2g

w

x D52
1

r
um] rAm .

~24!

These identities are useful in checking the accuracy of
numerical code used to simulate the electron dynamics in
dipole field. The quantity to the right-hand side of Eq.~24!
can be expressed explicitly as

um] rAm5ux] rAx2g] rw

5
A0

r H g
x

r F3

r S h

r
1 f D1

d f

df G
2uxS f

r
1

d f

df D J ; ~25!

also, we have

um]mAx5@~u•“ !1g] t#Ax5
A0

r Fg d f

df
2ur S f

r
1

d f

df D G .
~26!

The solution to the relativistic equations of motion is n
analytically tractable, but in the limiting case where the d
tance from the dipole, as measured in units ofk0

21, is a large
number, we recover the plane wave dynamics discusse
Sec. II. For shorter distances, where the wave-front curva
and the axial electromagnetic field components are sign
cant, a numerical code has been developed, and is prese
in Sec. IV. We now derive the electromagnetic field cor
sponding to the dipole four-potential from the relationFmn

5]mAn2]nAm . The electric field of the ideal oscillating di
pole is given by
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Ex5
A0

r H S x

r D
2F3

r S h

r
1 f D1

d f

dfG2F1

r S h

r
1 f D1

d f

dfG J ,

~27!

Ey5A0S xy

r 3 D F3

r S h

r
1 f D1

d f

df G , ~28!

and

Ez5A0S xz

r 3 D F3

r S h

r
1 f D1

d f

dfG , ~29!

while the magnetic induction is given by

Bx50, ~30!

By5
A0

r S z

r D F f

r
1

d f

dfG , ~31!

and

Bz52
A0

r S y

r D F f

r
1

d f

df G . ~32!

In the limit where the distance from the radiating dipole,
measured in units of the characteristic oscillation wavelen
k0

215l0/2p, is large, it is easy to show that the electroma
netic field distribution reduces to that of a plane wave:
have

Ex.2
A0

r H d f

df F12S x

r D
2G1O~r 21!J 1O~r 23!

.2
A0

r

d f

df F12S x

r D
2G , ~33!

Ey.A0S xy

r 3 D d f

df
1O~r 24!.0, ~34!

and

Ez.A0S xz

r 3 D d f

df
1O~r 24!.0, ~35!

for the electric field, and

Bx50, ~36!

By.
A0

r S z

r D F d f

df
1O~r 21!G.

A0

r S z

r D d f

df
, ~37!

and

Bz.2
A0

r S y

r D F d f

df
1O~r 21!G.2

A0

r S y

r D d f

df
, ~38!

for the magnetic induction. Forz5r , we recover the plane
wave relationBy5Ex ; it is also important to note that in
order to compare the dipole field with a plane wave, diffra
tion must be taken into account by rescaling the amplitude
the four-potential asA0→A0 /r . This is consistent as long a
s
th
-
e

-
f

the relative displacement along thez axis is small compared
to the distance from the dipole, so that diffraction over t
interaction length remains negligible.

Finally, we note that for a linearly polarized dipole wav
as described here, the electron trajectory remains in the p
of polarization; in other words, we can arbitrarily sety50
because of the azimuthal symmetry of the dipole radiat
pattern~see Fig. 2!, and haveEy5Bz50. BecauseBx50 as
well, it is clear that there is no component of the Loren
force in they direction; as a result, the electron trajecto
remains two-dimensional and contained within thex-z ~po-
larization! plane.

According to classical electrodynamic theory, any elect
magnetic wave can be described in terms of a multipole
pansion @18,19#. The lowest-order moment is the dipo
term, which we have employed in our simulations; contrib
tions from quadrupole, octupole, and other higher-order m
ments will be added to future versions of these simulation
order to provide a full description of a laser focus in vacuu
based on a multipole expansion. Vacuum laser accelera
could then be systematically verified for each order of
expansion and studied in detail with an electromagnetic fi
distribution which fully satisfies Maxwell’s equations an
the gauge condition.

IV. NUMERICAL SIMULATIONS

The independent variable is chosen to be the radial ph
f5t2r ; the evolution of the four-velocity is then describe
by

dum

df
5

dum

dt

dt

df
5am~g2ur !

21, ~39!

where the four-acceleration,am , is described by Eqs.~20!–
~23!, and where the radial component of the four-velocity
given by

ur5
dr

dt
5u• r̂5

xux1yuy1zuz

Ax21y21z2
. ~40!

The four-position of the electron is evaluated as

xm~f!5xm~f50!1E
0

f dxm

dc
dc5xm01E

0

fF um

g2ur
G~c!dc.

~41!

FIG. 2. Dipole intensity distribution, and geometry of the inte
action.
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In order to increase the accuracy of the code, a seco
order Runge-Kutta algorithm is used, where each dynam
variable,w(f), is evaluated according to

w~f1df!.w~f!1df
dw

df
~f!1

df2

2

d2w

df2 ~f!. ~42!

The light-cone variable,k5g2ur , is calculated using the
identity umum521, with the result that k5@11(u
3 r̂ )2#/(g1ur). Also, the evolution equation for the light
cone variable

dk

df
5

d

df
~g2ur !5

1

g2ur
FuxS dAx

df
1

w

x D
1ur

]w

]r
2S u22ur

2

r D G2 r̂•
du

df
, ~43!

is used to randomize the numerical noise and minimize
growth of numerical instabilities by introducing the averag
quantities

^k&5
1

2 Fk01E
0

f dk

dc
dc1

11~u3 r̂ !2

g1ur
G ~44!

and

^g&5
1

2 Fg01E
0

f dg

dc
dc1A11u2G . ~45!

FIG. 3. Top: electron energy as a function of phase, and c
parison with the plane wave case. Bottom: transverse momen
and vector potential, in the Lawson-Woodward limit.
d-
al

e

The convergence of the code is verified by compar
alternative calculated values of the energy, namely,

g~f!5g~f50!1E
0

fF a0

g2ur
G~c!dc ~46!

and

g~f!5A11ux
2~f!1uy

2~f!1uz
2~f!. ~47!

The relative numerical error is obtained by dividing the d
ference between Eqs.~46! and ~47! by the average value o
the energy,̂g&.

The code is first benchmarked against plane wave dyn
ics, as summarized in Sec. II. The initial normalized distan

-
m

FIG. 4. Top: electron energy as a function of phase, and co
parison with the plane wave case. Bottom: transverse momen
and vector potential, in the ponderomotive scattering regime.

FIG. 5. Typical electron trajectory for ponderomotive scatterin



th

rv
a
s

fu

o

r-
t

ly,
o-

pli-

ined

e
xi-
ave
ify

is

n ve

932 PRE 60A. L. TROHA et al.
from the radiating dipole is set at a large value:x05y0
50, z05106. The temporal pulse envelope is modeled by
function g(f)5sin2(pf/v0Dt)5sin2(pf/Df) in order to in-
tegrate the equations of motion over the finite phase inte
fP@0,Df#; this envelope also closely approximates
Gaussian near its maximum. The dipole parameters con
tently used throughout our analysis are: an intensity
width at half maximum~FWHM! of 10 fs, and a wavelength
l050.8mm, corresponding to the central wavelength
Ti:Al 2O3 CPA lasers@1–3#. The initial electron energy is
chosen to beg051, with the particle at rest before the inte
action; any other case can easily be modeled by boosting
dipole four-potential using the Lorentz transform. Final
the initial position of the electron along the direction of p

FIG. 6. Scaling of the relative energy gain with the wave-fro
curvature.
e

al

is-
ll

f

he

larization is chosen to be zero, since the dipole field am
tude is maximized in thex-y plane, as shown in Fig. 2.

The electron energy~top! and transverse momentum
along the polarization axis~bottom! are shown as functions
of the phase in Fig. 3, and compared to the results obta
for plane waves. In this case,A0 /z051, for the dipole field,
andA051, for the plane wave. The results fully validate th
code accuracy for small wave-front curvatures: the ma
mum relative difference between the dipole and plane w
models is,10210. Consequently, these results clearly ver
the LW theorem.

A much smaller value of the initial electron position
now considered: z0510. The amplitude of the four-
potential is chosen so thatA0 /z051. In this case, shown in

t FIG. 7. Scaling of the relative energy gain with the dipole wa
amplitude.
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Fig. 4, scattering is obtained, and the electron energy is
creased after the interaction. The corresponding electron
jectory is shown in Fig. 5, where we have plottedx(f) and
z(f). The numerical error for this run is quite low
(,10210), and many orders of magnitude smaller than
energy gain, thus clearly indicating that the net accelera
results from the dynamics, and that the LW theorem is
applicable for this level of wave-front curvature.

Now, we perform a systematic study of the scaling of t
energy gain,Dg5g(Df)2g05g* 2g0 , both in terms of
the wave-front curvature, and dipole wave amplitude. In
first instance, the initial amplitude of the dipole wave is fix
(A0 /z0 is held constant!, and we run the code for differen
values of the initial distance from the dipole,z0 . The results
are shown in Fig. 6, where we plot the relative energy g
(Dg/g0)(z0) for three different values ofA0 /z0 , namely
0.2, 1.0, and 5. These calculations clearly show the transi
between the LW regime, obtained for high values ofz0 , and
the ponderomotive scattering regime, which correspond
highly curved wave fronts. Furthermore, we have quantifi
the variation of the relative energy gain with the wave-fro
curvature, by fitting the data displayed on a log-log scale
an inverse power law, where (Dg/g0)(z0)}z0

2n . It was
found that the powern varied between 1.948 and 2.16 fo
values ofA0 /z0 ranging between 0.1 and 10; therefore,
inverse square scaling appropriately describes the trans
from ponderomotive scattering to the LW plane wave
gime. This result agrees well with physical intuition, a
shows the important role played by the axial electric fie
component: by inspecting Eq.~35!, we see thatEz approxi-
mately scales liker 22 since r .z at large distances, wher
the transverse displacement satisfies the inequalityx/r !1.

In the second case, the initial distance from the dipole
fixed, and we now study the behavior of (Dg/g0)(A0 /z0),
for three different values ofz0 : 1, 10, and 100. The result
are shown in Fig. 7. Two distinct scattering regimes appe
at low intensities, where the effective normalized poten
typically satisfies the relationA0 /z0&1, scattering is ineffi-
cient and the relative energy gain is small. In contrast
relativistic intensities, ponderomotive scattering can impa
sizable energy to the electron. Note, however, that this
ergy gain does not scale like the maximum energy in a pl
wave, which increases quadratically with the electromagn
potential, as shown in Eq.~7!; rather, the energy gain appea
to be slower than linear, as shown in Fig. 7.
pt.
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V. CONCLUSIONS

There is a lively debate regarding the exact origin of t
mechanism for vacuum acceleration of relativistic electro
by an intense electromagnetic pulse@8–10#. In this paper, we
have studied theoretically and numerically the vacuum in
action of an electron with a coherent dipole field distributi
exactly satisfying both Maxwell’s equations and the Loren
gauge condition. This is important, because the scatte
results obtained cannot be attributed to approximations in
electromagnetic field distribution. It was found that in th
limit where the wave-front curvature of the dipole field
small, the electron dynamics predicted by the plane w
theory were recovered, in agreement with the LW the
rem: no net energy gain was observed. In the regime wh
the wave-front curvature is significant, it was found that t
LW theorem no longer applies; indeed, net electron accel
tion was obtained. We then systematically studied the sca
of the energy gain with the wave amplitude, and with t
wave-front curvature. It was found that the wave-front cu
vature plays a major role in the acceleration mechanism
addition, two distinct scattering regimes can be defined
terms of the wave intensity: the nonrelativistic intensity r
gime, where the effective normalized vector potential
much smaller than unity@(A0 /z0)2!1# and the energy gain
is small, and the relativistic regime, where the axial dyna
ics dominates over the transverse motion, yielding a qu
linear scaling of the energy gain withA0 /z0 . Finally, it was
also shown that when radiation reaction is taken into
count, plane waves can exchange energy and momen
with a charged particle, but the effect is essentially nonlin
and scales as the square of the charge and external field
regime where the LW theorem clearly no longer applies.
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